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Summary 
The most common method for rodent control worldwide is the use of anticoagulant 

rodenticides (ARs), which block the vitamin K cycle and thus cause death by haemorrhage. 

First-generation anticoagulant rodenticides (FGARs) were introduced into the pest control 

already in the 1940s and some of them are still in use. Second-generation anticoagulant 

rodenticides (SGARs), which are toxic at a lower dose, were developed after rodents began to 

display resistance to first generation agents. As ARs are an easy and cost-effective way to 

control rodents, and thus chemical control of rodents relies almost exclusively on ARs, their 

use is widespread, and consequently several resistant strains of rodents have emerged, 

especially in the brown rat (Rattus norvegicus) and the house mouse (Mus musculus). These 

resistant strains have evolved a modification of the VKORC1 enzyme involved in the catalytic 

recycling of vitamin K. Polymorphism in the Vkorc1 gene can be identified by genetic analyses 

from DNA extracted from the tissue samples of rodents.  

Here we report the results of a prevalence study of AR resistance (Vkorc1 gene polymorphism) 

in populations of brown rat and house mouse in Finland. The brown rat and the house mouse 

are pest rodent species in the country. The yellow-necked mouse (Apodemus flavicollis), 

although regarded as a common pest in Finland, was not selected for this study, as pilot 

sequencing was unable to identify relevant Vkorc1-polymorphism from samples of this 

species. Rodent control is required as a part of own control in food and feed production 

sectors in Finland and ARs are commonly used in farms and urban areas. No systematic 

screening on the prevalence of AR resistance has been conducted in the country before.  We 

collected tissue samples from 96 animals (48 mice and 48 rats) in both farming areas of 

southwestern Finland (rural environment) and in the cities of Helsinki, Turku and Pori (urban 
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environment) in years 2017-2019. We found evidence for Vkorc1 mutations occurring in both 

species in Finland.  

For mice, 65% of the sampled individuals were found to carry Vkorc1 polymorphism. The 

majority of positive individuals (27 out of 31) had a type Y139C polymorphism (16 

heterozygous and 8 homozygous). Three positive individuals had a type L128S polymorphism 

(one heterozygous and two homozygous). In addition, one individual was tested positive for 

both heterozygous Y139C and L128S. Type Y139C confers resistance to FGARs and of the 

SGARs bromadiolone and difenacoum, and L128S to FGARs and SGARS bromadiolone, 

difethialone and brodifacoum. The prevalence of a Vkorc1 polymorphism ranged between 

study sites from 25% (Loimaa) to 100% (Jokioinen, Salo, Turku). Mice harbouring a type Y139C 

were found in all the sites, whereas type L128S was encountered in one location only (Salo).  

In rats, however, only two sampled individuals were tested positive for a Vkorc1 

polymorphism and the type found was of a rare one (R33P). Type R33P probably confers 

resistance to warfarin.  

These results suggest that the Vkorc1 polymorphism type Y139C is fairly common in Finnish 

house mouse populations and this knowledge should be taken into account when planning 

control actions targeting house mice. The low number of AR-resistant rats found, and the 

absence of most common Vkorc1 polymorphisms in the sampled individuals, suggests a low 

prevalence of resistance in rats in Finland. However, more studies are needed to gain a better 

picture about the prevalence of Vkorc1 types in Finnish rat populations. In addition, to fully 

understand the state of resistance in Finland, especially studies on effectiveness and 

resistance performed on yellow-necked mouse and potentially also bank voles (Myodes 

glareolus), would be greatly needed. 

 

Tiivistelmä 
Maailmanlaajuisesti jyrsijöiden torjuntaan yleisimmin käytetty menetelmä on 

antikoagulanttijyrsijämyrkkyjen (AR) käyttö. Antikoagulantit vaikuttavat veren hyytymiseen 

K-vitamiinisyklin kautta, jolloin myrkytetty jyrsijä kuolee sisäisiin verenvuotoihin. 

Ensimmäisen polven ARt otettiin käyttöön jyrsijöiden torjunnassa jo 1940-luvulla ja jotkut 

niistä ovat edelleen käytössä. Toisen polven aineet kehitettiin, kun jyrsijöiden huomattiin 

tulevan vastustuskykyisiksi eli resistenteiksi ensimmäisen polven aineille. Toisen polven 

aineet ovat ensimmäisen polven aineita vahvempia ja siksi kuolettavia pienemmillä 

annoksilla. Antikoagulanttimyrkkyjen käyttö on helppo ja kustannustehokas keino torjua 

jyrsijöitä, mutta koska jyrsijöiden kemiallinen torjunta perustuu lähes pelkästään 

antikoagulantteihin, on useille jyrsijälajeille, erityisesti rotalle (Rattus norvegicus) ja 

kotihiirelle (Mus musculus), kehittynyt antikoagulanteille vastustuskykyisiä kantoja. 
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Vastustuskyky perustuu K-vitamiinin kiertoon olennaisesti liittyvän VKORC1-entsyymin 

mutaatioihin, jotka voidaan tunnistaa jyrsijöiden kudosnäytteistä analysoitavasta DNA:sta.  

Tässä raportissa selvitämme AR-vastustuskyvyn (Vkorc1-geenin polymorfismin) yleisyyttä 

suomalaisissa rotta- ja kotihiiripopulaatioissa. Rotta ja kotihiiri ovat Suomessa maatiloilla ja 

kaupungeissa torjuntatoimia vaativia jyrsijälajeja. Metsähiiri (Apodemus flavicollis) on 

Suomessa huomattavasti yleisempi tuhojyrsijä kuin kotihiiri, mutta koska metsähiiren 

genomin sekvensointi ei onnistunut, jäi laji siksi pois tutkimuksesta.  Jyrsijätorjuntaa tehdään 

monilla eri aloilla, kuten asuinkiinteistöissä, kaupoissa, ravintola- ja majoitusalalla, maatiloilla, 

elintarviketeollisuudessa ja monella muulla teollisuuden alalla, kuntien ylläpitämissä 

kiinteistöissä (koulut, päiväkodit, hoitolaitokset, suurkeittiöt jne.), puistoissa, kuntien 

keskusta-alueilla, seurakuntien kiinteistöissä mukaan lukien kirkoissa, jäteasemilla, 

viemäriverkostoissa, metrotunneleissa, satamissa ja lentokentillä. Suomessa ei ole aiemmin 

tehty systemaattista tutkimusta jyrsijöiden mahdollisesta antikoagulanttiresistenssistä. 

Tutkimusta varten kerättiin kudosnäytteet 96 jyrsijästä (48 rottaa ja 48 kotihiirtä) läntisen ja 

lounaisen Suomen maatalousalueilta sekä Helsingin, Turun ja Porin kaupunkien alueelta 

vuosina 2017–2019. Vkorc1-geenin mutaatioita löytyi molempien lajien näytteistä. 

Kaikkiaan 65 % kotihiirinäytteistä löytyi Vkorc1-geenin mutaatio, joista suurin osa (27/31) oli 

genotyyppiä Y139C. Positiivisista hiiristä 16 oli mutaation suhteen heterotsygootteja eli 

mutaatio oli vain geenin toisessa alleelissa, ja kahdeksan homotsygootteja. Kolmella hiirellä 

oli genotyypin L128S mutaatio, ja näistä kolmesta yksi oli mutaation suhteen heterotsygootti 

ja kaksi homotsygoottia. Yhdellä hiirellä oli molempien tyyppien mutaatio, sekä Y139C että 

L128S. Genotyypin Y139C mutaation tiedetään aiheuttavan resistenssiä ensimmäisen polven 

antikoagulantteja sekä bromadiolonia ja difenakumia vastaan. Vkorc1-geenin mutaation 

esiintyvyys vaihteli tutkimusalueiden välillä 25 prosentista (Loimaa) sataan prosenttiin 

(Jokioinen, Salo, Turku). Genotyypin Y139C mutaatio löydettiin kaikilta alueilta, kun taas 

L128S-genotyyppiä löytyi vain yhdeltä alueelta (Salo). 

Vain kahdesta rottanäytteestä löydettiin Vkorc1-geenin mutaatio, joka oli harvinaista R33P-

tyyppiä. Tyypin R33P mutaation arvellaan voivan aiheuttaa resistenssiä varfariinia vastaan. 

Tulokset osoittavat, että genotyypin Y139C mutaatiota esiintyy melko yleisesti suomalaisissa 

kotihiiripopulaatioissa, mikä tulisi ottaa huomioon torjuntatoimia suunniteltaessa. Rotilla 

löydetty alhainen Vkorc1-geenin mutaatioiden esiintyvyys ja yleisten mutaatioiden 

puuttuminen löydöksistä viittaa alhaiseen AR-resistenssiin, mutta lisätutkimukset ovat 

tarpeen kattavan tilannekuvan saamiseksi. Kokonaistilanteen selvittämisessä erityisen 

tärkeää olisi metsähiirellä, mahdollisesti myös metsämyyrällä (Myodes glareolus), tehtävä 

tehokkuus- ja resistenssitutkimus. 
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1. Introduction 

Rodents can have detrimental effects on the economy and public health of human societies 

in both rural and urban environments (Singleton et al. 1999), and thus methods controlling 

their populations have been sought and tested for a long time. Currently, the most common 

chemical method for rodent control worldwide is the use of anticoagulant rodenticides (ARs), 

which block the vitamin K cycle and cause death by haemorrhage (Laakso et al. 2010, Murphy 

2018). Although ARs are an easy and a cost-effective way to control rodents, there are several 
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problems related to their use (Berny 2011). First, both non-target wildlife and domestic 

animals are exposed unintentionally to ARs either through consumption of baits meant for 

rodents or by consumption of poisoned rodents (Lefebvre et al. 2017, Koivisto et al. 2016). 

Second, because chemical control of rodents relies almost exclusively on ARs, many distinct 

resistant strains, especially in the brown rat (Rattus norvegicus) and the house mouse (Mus 

musculus) have emerged e.g., in France, Germany, and the UK (Pelz et al. 2005, Berny et al. 

2014, McGee et al. 2020). The origin of resistance has been identified to specific genetic traits, 

namely polymorphism in the Vkorc1 gene, which codes an enzyme involved in the catalytic 

recycling of vitamin K (Li et al. 2004, Rost et al. 2004). These mutations have then become 

favoured by natural selection after the use of ARs has become common. 

The presence of resistant strains in a controlled population means that stronger ARs and/or 

higher quantities are needed for the control measures to be effective depending on VKORC1 

polymorphism. This leads to a vicious circle of resistance becoming subsequently more 

prevalent in the targeted rodent population and, as a result, even heavier control measures 

need to be used. Thus, knowing if resistant strains exist and if they do, which type(s) they are, 

is essential knowledge not only for practising effective rodent control but also for reducing 

the risk of resistant strains becoming more common in the future because of inefficient use 

of ARs. Resistance and higher amounts of ARs will lead also in increased residue levels in the 

non-target animals. 

In Finland, previous sporadic evidence exists on the occurrence of AR resistant strains in house 

mouse (Myllymäki 1995) but no systematic screening on the prevalence of AR resistance has 

been conducted in the country before this. As the use of ARs is common in Finland and 

resistance occurs in many European countries there was a need to clarify the resistance 

situation also in Finland. Here we report on results of a prevalence study of AR resistance 

(Vkorc1 gene polymorphism) in populations of brown rat and house mouse in Finland.  

 

1.1 Anticoagulant rodenticides 

All anticoagulant rodenticides have a similar kind of a structural formula and the same mode 

of action: they act as effective blockers of the vitamin K cycle, resulting in an inability to 

produce essential blood-clotting factors (Berny et al. 2014, Lefebvre et al. 2017). In addition, 

anticoagulants cause damage to tiny blood vessels, which increases their permeability and 

causes diffuse internal bleeding. These effects are gradual, developing over several days. In 

the final phase of intoxication, the rodent collapses due to haemorrhagic shock or severe 

anaemia. 

Anticoagulants can be divided into first- and second-generation substances. The first-

generation rodenticides (FGARs) were introduced for pest control already in the 1940s and 

some of them, like warfarin, are still in use. First generation rodenticides are less toxic, require 
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multiple doses to be fatal and are eliminated within few days. Second-generation 

anticoagulant rodenticides (SGARs), which are toxic at a much lower dose (IPCS 1995), were 

developed after rodents started to exhibit resistance to first generation agents. The SGAR 

group includes bromadiolone, difenacoum, and the stronger substances brodifacoum, 

difethialone and flocoumafen. SGARs are potential PBT substances, meaning that they are 

Persistent, Bioaccumulative and Toxic (Commission Regulation (EU) No 253/2011). The 

persistent nature of SGARs is reflected in the long elimination times of these substances. 

As ARs are very toxic and persistent, there are problems related to their use: the application 

of most toxic ARs, which is necessary due to resistance, results in higher exposure of non-

target wildlife (Berny 2011). Anticoagulants have been found to transfer to non-target 

animals either by direct consumption of baits (primary poisoning) or more commonly by 

consuming contaminated rodents (secondary poisoning, Lambert et al. 2007). Because death 

by rodents to anticoagulants takes about a week (Laakso et al. 2010) rodents can during this 

time be preyed upon by predators, exposing them to the rodenticides that the rodent has 

consumed. Anticoagulants have been found in many non-target species around the world, 

most commonly in rodent-eating predators like owls, raptors, foxes, and mustelids (Berny and 

Gaillet 2008, Norström et al. 2009, Christensen et al. 2010, Laakso et al. 2010, NIVA 2012, 

Koivisto et al. 2016). The extensive use of ARs, especially the more toxic SGARs, exposes 

wildlife to AR poisoning and thus their use should be carefully considered. However, the 

existence of AR resistant rodent strains or the fear of their development can put pressure for 

the use stronger ARs. 

 

1.2 Development and the genetic basis of resistance 

The genetic basis of resistance lies in the Vkorc1 gene (vitamin K epoxide reductase complex 

subunit 1), mutations of which render rodenticides ineffective (Rost et al. 2004, Pelz et al. 

2005). Anticoagulant resistance in brown rats and house mice has been found to be linked to 

single nucleotide polymorphisms (SNPs) in the coding region of Vkorc1. Vkorc1 

polymorphisms have been identified in humans, mice, and rats (e.g., Rost et al. 2004, Pelz et 

al. 2012, Gryseels et al. 2015). As resistance to ARs developed so quickly after the introduction 

of rodenticides, it has been suggested that the resistance mediating VKORC1 polymorphisms 

arise from standing genetic variation. As these polymorphisms are beneficial under the use of 

anticoagulants, they have been selected for and their prevalence has thus increased (Lefebvre 

et al. 2016). 

Vkorc1 resistance is co-dominant, meaning that heterozygous individuals are more 

susceptible to rodenticides than homozygous individuals, but less susceptible than wild type 

rodents without Vkorc1 mutations (Grandemange et al. 2009, Berny et al. 2018). AR 

resistance is costly to the animals in terms of e.g., lower reproductive success. For example, 

Heiberg et al. (2006) found that homozygous resistant rats had a lower reproductive success 
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than what was expected, whereas heterozygous males or females had better reproductive 

success. Since resistance is so common, it must be a major selective advantage in a population 

where ARs are used despite its costs to fitness. 

Quite soon after introducing the FGARs for rodent control, the first warfarin resistant rodent 

strains were discovered (Berny et al. 2018). The first resistance case was reported in Scotland 

in 1958, followed by similar reports in other areas in Europe: Wales, Denmark, the 

Netherlands, and Germany (Lund 1972). Following this discovery, new and stronger SGARs 

were introduced to overcome the resistance problem. SGARs are more toxic than FGARs and 

require only a single dose to be lethal (IPCS 1995), working more effectively with neophobic 

rodents (Berny et al. 2018). 

For a while SGARs seemed to be the answer to the resistance problem. However, since all ARs 

have similar chemical structures and a similar mode of action, resistance to the first-

generation anticoagulants brought with it a measure of cross-resistance to the second-

generation compounds and soon also populations with reduced susceptibility to the more 

potent SGARs began to appear (Greaves et al. 1982). The resistance system has been found 

to be hierarchical. At the base there is warfarin (FGAR) resistance, followed by coumatetralyl 

(FGAR), then cross-resistance to SGARs bromadiolone over difenacoum (Pelz et al. 1995) and 

up to brodifacoum at the top. Resistance to difethialone or brodifacoum has, up until recent 

years, never become as widespread as that to the first-generation compounds (Buckle and 

Smith 1994, Berny et al. 2018). 

 

1.3 Prevalence of resistance and polymorphism 

Nowadays, AR resistant strains of commensal rodents, such as brown rats, roof rats (Rattus 

rattus) and house mice occur throughout the world (tables 1 and 2). There is published 

evidence of AR resistance in rodents from all continents but Africa (Berny et al. 2018). Most 

studies and reports are available from western European countries, but no published records 

exist for the majority of European countries, especially from eastern or southern Europe (but 

see Iacucci et al. 2018). This is more likely to be because resistance has not been studied in 

those countries than because it does not exist (Berny et al. 2018). 

More than 10 and at least 15 different type of polymorphism have been found in the brown 

rat and the house mouse in Europe, respectively (Tables 1 and 2). Of these, specifically 

common are the types L128S and Y139C, which have been associated with severe resistance 

to FGARs and limited resistance to SGARs (Goulois et al. 2017). In many European countries, 

a high prevalence of Vkorc1 polymorphism has been observed in wild-caught house mice (e.g., 

Pelz et al. 2011, Goulois et al. 2017, Baxter 2019, McGee et al. 2020). For example, in Germany 

over 90% of the house mice tested carried genetic resistance types (RRAG 2012). DNA can be 
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sequenced from small pieces of tissue from a tail tip and the presence of anticoagulant 

resistant individuals in a population can be identified. 

AR resistance has been mostly studied and found in the three commensal rodent species 

(brown rat, black rat and house mouse). Recent studies have found anticoagulant resistance 

also in other rodent species, like Lesser Rice-field rat (Rattus losea; Wang et al. 2008), Asian 

house rat (Rattus tanezumi; Andru et al. 2013) and water voles (Arvicola amphibius; Vein et 

al. 2011), although the latter does not appear to be linked to a modification of the Vkorc1 

gene (Berny et al. 2018). The potential of Vkorc1 polymorphism has also been recently studied 

in carnivores (mustelids; Stöck et al. 2019) but their full role in AR tolerance is not yet known. 

Table 1. Known Vkorc1 types with the locations where they have been found and known 

resistance to ARs in the brown rat. (Modified from McGee et al. 2020; Table 1 and references 

therein.) 

Amino acid change Short name Res to FGAR Res to SGAR Where found 

Val12Leu V12L   Azores 
Ala21Thr A21T   Korea 
Ala26Thr A26T   UK 
Arg33Pro R33P   UK 
Arg35Pro R35P   France, US 
Tyr39Asn Y39N   UK 
Ser56Pro S56P   Germany 
Trp59Arg W59R   Argentina 
Phe63Cys F63C   UK 
Glu67Lys E67K   Japan 
Ile90Leu I90L   Argentina, Azores, 

Indonesia, US 
Leu120Gln L120Q Chlorophacinone, 

warfarin 
Bromadiolone, 
difenacoum 

France, Netherlands, UK 

Ile123Ser I123S   Italy 
Leu128Gln L128Q Chlorophacinone, 

coumatetralyl, 
warfarin 

 France, UK 

Leu128Ser L128S   France 
Tyr139Cys Y139C Chlorophacinone, 

coumatetralyl, 
warfarin 

Bromadiolone, 
difenacoum 

Denmark, France, 
Germany, Hungary, 
Netherlands, UK 

Tyr139Ser Y139S Chlorophacinone, 
coumatetralyl, 
warfarin 

 UK 

Tyr139Phe Y139F Chlorophacinone, 
coumatetralyl, 
warfarin 

Bromadiolone, 
difenacoum 

Belgium, France, Korea, 
Netherlands, UK 

Ile141Val I141V   Indonesia 
Ala143Val A143V   Indonesia, Thailand 
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Table 2. Known Vkorc1 types with the locations where they have been found and known 

resistance to ARs in the house mouse. (Modified from McGee et al. 2020; Table 1 and 

references therein.) 

Amino acid change Short name Res to FGAR Res to SGAR Where found 

Arg12Trp R12W   France, Germany 
Ala21Thr A21T  Bromadiolone Serbia 
Ala26Ser A26S   France 
Ala26Thr A26T  Bromadiolone, 

difenacoum 
France 

Arg35Pro R35P   US 
Glu37Gly E37G   France 
Ala48Thr A48T   France 
Arg58Gly R58G   France 
Trp59Gly W59G Warfarin  France, Germany 
Arg61Leu R61L   France 
Leu124Met L124M   France 
Leu128Ser L128S Chlorophacinone, 

coumatetralyl, 
warfarin 

Bromadiolone, 
difethialone, 
brodifacoum 

Azores, France, 
Germany, Ireland, 
Serbia, Switzerland, UK 

Tyr139Cys Y139C Chlorophacinone, 
coumatetralyl, 
warfarin 

Bromadiolone Azores, France, 
Germany, Ireland, 
Serbia, Switzerland, UK 

Arg12Trp,    
   Ala26Ser,  
   Ala48Thr, 
   Arg61Leu 

R12W, 
A26S, 
A48T, 
R61L 

Chlorophacinone, 
coumatetralyl 

Bromadiolone, 
difenacoum 

France, Germany, 
Spain, Switzerland 

Ala26Thr/Leu128Ser A26T/ L128S Chlorophacinone, 
coumatetralyl 

Brodifacoum, 
bromadiolone, 
difenacoum, 
difethialone 

France 

Ala26Ser/Leu128Ser A26S/L28S Chlorophacinone, 
coumatetralyl 

Brodifacoum, 
bromadiolone, 
difenacoum, 
difethialone 

France 

Trp59Gly/Leu124Met W59G/L124M   France 
Trp59Gly/Leu128Ser W59G/L128S   France 
Leu128Ser/Tyr139Cys L128S/Y139C  Bromadiolone Serbia 

 

 

1.4 Control of commensal rodents and use policies of rodenticides in 

Finland 

From the FGAR group, coumatetralyl is allowed for rodent control in Finland. Of the SGAR 

substances, brodifacoum, bromadiolone, difenacoum, difethialone, and flocoumafen were 

registered as biocidal products in Finland in 2019. The following anticoagulant rodenticides 

are registered in Finland: coumatetralyl (FGAR), and SGARs, brodifacoum, bromadiolone, 

difenacoum, difethialone, and flocoumafen (https://www.kemidigi.fi/). The general public 

https://www.kemidigi.fi/
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can use rodenticides containing brodifacoum, difethialone and flocoumafen, but these 

products are sold only in pre-filled bait stations and they can only be used indoor for the 

control of mice. Since 2018, the general public has not been able to control rats. The restricted 

use of anticoagulant rodenticides by the general public is considered to reduce the selection 

pressure of resistant rodents. 

Some active substances (coumatetralyl, bromadiolone, difenacoum) are only allowed for the 

professional pest control operators (PCOs) due the classification as toxic for reproduction 

(Repr. 1B; H360D: May damage the unborn child). The most potent anticoagulants are 

effective even below the classification limit and are therefore available also for the general 

public. While the use of ARs by the general public is very restricted, the pest control operators 

can use rodenticides both indoors and outdoors, and for the control of both rats and mice.  

The professional pest control operators and pest control companies must be registered by 

the Finnish Safety and Chemicals Agency Tukes (https://tukes.fi/asiointi/rekisterit/biosidit) 

since 2017. In addition, the pest control operators need a qualification as laid down in the 

Finnish Chemicals Act 599/2013). Farmers are considered to have an equal qualification when 

they have an appropriate qualification in plant protection. A code of good practise for the 

professional rodent control was published in 2020 (https://tukes.fi/tietoa-

tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-ohje).  

Rodent control is needed in various sectors of society. Rodent control is conducted in 

residential buildings, shops, restaurants, hotels, farms, industry, kindergartens, schools, 

nursery homes, parks, churches, waste storage areas, sewers, metro tunnels, harbors and 

airports. The list is not exhaustive. The use of anticoagulant rodenticides is still very common, 

although the non-chemical alternative methods are increasingly used too. 

 

1.5 Aims of the study 

We aim to assess the prevalence of AR resistance (Vkorc1 gene polymorphism) in populations 

of two species of commensal rodents (brown rat and house mouse) in Finland by using tissue 

samples collected from 96 animals (48 mice and 48 rats) in both farming areas of 

southwestern Finland (rural environment) and in the cities of Helsinki, Turku and Pori. There 

is no indication of a widespread resistance problem in Finland but previous evidence of the 

occurrence of AR resistant strains of house mouse exists (Myllymäki 1995). Nevertheless, no 

systematic screening of AR resistance has been conducted in Finland before. The yellow-

necked mouse (Apodemus flavicollis), although regarded as a common pest, was not selected 

for this study, as pilot sequencing was unable to identify relevant Vkorc1-polymorphism from 

samples of this species.  

 

https://tukes.fi/asiointi/rekisterit/biosidit
https://tukes.fi/tietoa-tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-ohje
https://tukes.fi/tietoa-tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-ohje
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2. Material and methods 

2.1 Study species 

The brown rat is a commonly controlled species of commensal rodents in Finland. The house 

mouse is a less frequent pest rodent. Brown rats are typically controlled in residential 

buildings in urban and semi-urban areas and in farms. The house mouse occurs in buildings 

where cereals are processed or stored, or in feed mills. Sometimes house mice are also found 

in cellars of old buildings. 

 

2.2 Sample collection 

Samples were collected both by PCOs and by members of a research team investigating the 

role of rodents as pests in cattle and pig farms. Samples were obtained in both urban and 

rural sites (i.e., farms) where rodent infestations were recorded. No detailed knowledge is 

available regarding the type of anticoagulant used, the longevity of application or the 

exposure history of rodents to them in these sites. Nonetheless, all sites (according to PCOs 

and farmers) have applied anticoagulant rodenticides. Typically, continuous bating is used on 

farms, while PCOs operating in urban sites more often employ pulsed baiting protocols, 

adhering to the instructions of use of the rodenticides and the code of good practice 

(https://tukes.fi/tietoa-tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-

ohje).  

Rodents obtained from PCOs were trapped using electronic traps and frozen whole 

immediately at -20˚C for further dissection and analysis. Rodents trapped for the farm study 

were trapped using standard lethal snap traps adhering to Finnish animal welfare legislature. 

Again, trapped individuals were frozen immediately whole at -20˚C for further dissection and 

analysis. Most sampling was carried out in cool autumn, winter and spring months when 

ambient temperatures were < 10˚C, which minimized potential degradation of dna material. 

In the laboratory, tail snippets were removed from rodents as tissue samples while still frozen, 

stored in ethanol in microtubes and immediately returned to -20˚C. Samples were shipped on 

dry ice to Germany for sequencing.  

https://tukes.fi/tietoa-tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-ohje
https://tukes.fi/tietoa-tukesista/materiaalit/biosidit/jyrsijatorjunnan-hyvan-kaytannon-ohje
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Figure 1. A map showing the study sites where the analysed samples were collected. Circles = 
house mice only, squares = rats only, stars = both species. 

 

2.3. Genetic sequencing 

Subsamples of tail tissue were taken, and DNA extracted using Gentra Puregene Mouse Tail 

Kit (Qiagen) at the Julius Kuehn Institute. Subsequent molecular work was performed at 

Eurofins Genomics Europe Sequencing GmbH. 

All sequences were generated using BigDye terminator chemistry (version 3.1) (Thermo Fisher 

Scientific, Waltham, MA USA). For sequencing reactions peqStar 96 HPL (PEQLAB 

Biotechnologie GMBH, Erlangen, Germany) and/or GeneTouch (Biozym Scientific GmbH, 

Oldendorf, Germany), and/or Biometra Tadvanced (Biometra GmbH, Göttingen, Germany) 

thermal cyclers were used. Sequencing reaction cleanup was done on a Hamilton Starlet 

robotic workstation (Hamilton Robotics GmbH, Martinsried, Germany) by gel-filtration 

through a hydrated Sephadex matrix filled into appropriate 96well filter plates followed by a 

subsequent centrifugation step. Finally, all reactions were run on ABI3730xl capillary 

sequencers (Thermo Fisher Scientific, Waltham, MA USA) equipped with 50 cm capillaries 

(Thermo Fisher Scientific, Waltham, MA USA) and POP7 polymer (Thermo Fisher Scientific, 

Waltham, MA USA). 

Sequencing data were called using the original Sequencing Analysis Software 6 (Applied 

Biosystems) including the KB-basecaller (Thermo Fisher Scientific, Waltham, MA USA), which 

assigns quality values to all called bases similar to PHRED quality score (Ewing et al. 1998). 

Additional basecalling was performed using the PeakTrace basecaller from Nucleics Pty Ltd 

(Woollahra, AUS) to improve the single peak resolution and quality values and therefore 
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increase the reading lengths. The assembly was performed using the Staden Software 

Package (Roger Staden, LMB, Cambridge, UK/ Pregap4 version 1.6, Gap4 version 4.11.2). 

For quality, clipping a sliding window of 10 nucleotides was used to average the confidence. 

The method starts from the point of highest average quality and then steps outwards in both 

directions until the average confidence within the window drops below 30. Normally both 5’ 

and 3’ sequence trace ends were quality clipped. These clips underwent a manual plausibility 

check and were further modified. 

The assembly itself was done as a normal shotgun assembly using the quality clipped reads. 

The settings for the assembly were as follows: minimum initial match 20, maximum pads 

(gaps arising in one read due to the alignment with others) per reads 25, maximum percent 

mismatch 5.00. Further potential joins were searched with the find internal joins function 

under more relaxed conditions: minimum overlap 20 and maximum percent mismatch 30.00. 

These additional joins underwent a manual plausibility check. 

Manual editing steps were necessary to resolve base caller errors. Comparison to the 

reference sequences (Genbank number NM 178 600 for house mice and Vkorc1 GenBank 

accession no. NM-203 335 for brown rat) was also performed as an assembly, using the same 

parameters as for the single read assembly. 

3. Results 

3.1 Species 

Some type of Vkorc1 polymorphism was found in 31 (65%) of 48 house mouse samples. Most 

positive individuals (27 out of 31) had a type Y139C (16 heterozygous and 8 homozygous, Fig 

2). Three positive individuals had a type L128S (one heterozygous and two homozygous). In 

addition, one individual was tested positive for both Y139C and L128S types. 
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Figure 2. VKORC1 polymorphism prevalence in the analyses house mouse samples. 

 

In rats, on the other hand, only two samples out of 48 (4%) were positive. Both individuals 

had a type R33P, one heterozygous and one homozygous. 

 

3.2 Sexes 

In house mice, 28 of the tested individuals were males, 16 females and in four individuals the 

sex was not defined. Out of 16 tested females 8 (50%) were positive (5 heterozygous, 2 

homozygous and one that had two types of polymorphism, both heterozygous). Whereas in 

males 20 individuals out of 28 (71%) were positive (12 heterozygous, 8 homozygous). Both 

positive rats were females.  

 

3.3 Study sites 

The prevalence of Vkorc1 polymorphism in house mice varied between study sites from 25% 

(Loimaa) to 100% (Jokioinen, Salo, Turku; Table 3). Type Y139C was found in all sites (Table 

3), whereas type L128S was found in one location only (Salo). 

Both positive rats originated from the same location (Koski TL). 

 

Table 3. Sample size, prevalence, and the type of Vkorc1 polymorphism in house mice and rats 

in relation to study site (het = heterozygous, hom = homozygous, ND = not defined). Asterisk 

(*) denotes the presence of the one mouse individual with two types (both heterozygous), 

classified here as heterozygous. 

 

Species Location Urban/rural N N 
pos 

prevalence N 
het 

N hom type(s) 

Mus Jokioinen Rural 6 6 100% 3 3 Y139C 
Mus Koski TL Rural 6 3 50% 3 0 Y139C 
Mus Loimaa Rural 4 1 25% 1 0 Y139C 

Mus Punkalaidun Rural 12 6 50% 3 3 Y139C 
Mus Salo Rural 6 6 100% 4* 2 Y139C, 

L128S 
Mus Somero Rural 11 6 55% 4 2 Y139C 
Mus Turku Urban 3 3 100% ND ND Y139C 
Rattus Forssa Rural 2 0 0%    
Rattus Helsinki Urban 28 0 0%    



15 
 

Rattus Honkajoki Rural 1 0 0%    
Rattus Karvia Rural 1 0 0%    
Rattus Koski TL Rural 4 2 50% 1 1 R33P 
Rattus Parkano Rural 2 0 0%    

Rattus Punkalaidun Rural 1 0 0%    
Rattus Pöytyä Rural 1 0 0%    
Rattus Salo Rural 1 0 0%    
Rattus Somero Rural 4 0 0%    
Rattus Ypäjä Rural 1 0 0%    

 

4. Discussion 

Here we aimed to assess the prevalence of AR resistance (Vkorc1 gene polymorphism) in the 

populations of two commensal rodents (brown rat and house mouse) in Finland. We analysed 

tissue samples from 96 animals (48 mice and 48 rats) and found evidence for Vkorc1 

polymorphism occurring in both species in Finland. In mice, type Y139C was quite common, 

but a few individuals with type L128S were also found. In rats, however, only two sampled 

individuals were tested positive for a Vkorc1 polymorphism and none of the types common 

in other parts of Europe were found. The type found in our rat samples was of a rare type 

(R33P), reported earlier from the UK (Rost et al. 2009) and Japan (Tanaka et al. 2013).  

 

4.1 Species 

4.1.1 House mouse 

We found a 65% prevalence of Vkorc1 polymorphism in house mice. A vast majority of 

positive individuals had a type Y139C, which was identified at all the sampled locations. Most 

individuals analysed in our study were heterozygous. As homozygotism indicates a high 

degree of selection for anticoagulant resistance, our results suggest that the use of 

rodenticides in our study sites has not been excessively persistent and heavy. Type L128S was 

found in a few individuals, but in only one of the study sites. One individual tested positive 

for both types. Double polymorphism, i.e., mice carrying two resistance types of the Vkorc1 

gene, is associated with severe resistance to all anticoagulant rodenticides (Goulois et al. 

2017). 

The types found in this study are the most common ones observed in house mice. Likewise, 

their prevalence in Finland was at similar levels compared to other studies conducted in 

Europe. For example, Goulois et al. (2017) trapped house mice at 65 locations throughout 

France and found a >70% prevalence for nine different Vkorc1 polymorphism types. In 

addition, 80% of these mice had a homozygous polymorphism (Goulois et al. 2017). In the UK, 

Baxter (2019) found a prevalence of 46.9% for type L128S and 31.8% for Y139C polymorphism. 
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Also, 4.6% carried a double polymorphism (Baxter 2019). Pelz et al. (2011) found Vkorc1 

polymorphism to be common and widespread across Germany, with a high proportion of 

homozygous individuals. 

Type Y139C was originally found in a wild population of house mice trapped around Reading, 

UK, in the 1990s. It causes resistance against FGARs and of SGARs bromadiolone and 

difenacoum (Buckle and Prescott 2012). Brodifacoum has been found to be effective against 

this strain of house mouse (RRAG 2012). 

Regarding sexes of house mice, 50% of females had Vkorc1 polymorphism (5 heterozygous, 2 

homozygous and one individual had both types, both heterozygous). 71% of males had Vkorc1 

polymorphism (12 heterozygous, 8 homozygous). It has been suggested that female house 

mice could have a higher level of tolerance to anticoagulants than males. For example, 

Prescott (1996) found that female house mice were more likely to be homozygous resistant, 

whereas resistant males were more likely to be heterozygous. This resulted in male offspring 

having a higher level of mortality in test crosses than females (Prescott 1996). Also, Scepovic 

et al. (2016) reported females being more resistant than males and similar results have also 

been found in brown rats (Lefebvre et al. 2016). As we found a lower prevalence in female 

house mice compared to males, and also the proportion of homozygous polymorphism was 

lower in females, our results are not in line with these observations. However, we studied the 

Vkorc1 polymorphism prevalence only, and not the actual level of resistance.  

Although AR resistance in house mice is becoming an ever more prominent problem (Baxter 

2019), the majority of AR resistance research has been done on brown rats. Rats and mice 

differ in their feeding behaviour, which has led to differences in the evolution of resistance 

(Baxter 2019). Rats mainly eat from one food source and thereby consume a lot of 

anticoagulant bait whereas mice eat from many food sources, therefore diluting the bait with 

other food sources (Lefebvre et al. 2016). More research is needed specifically to address 

factors leading to AR resistance in house mice under varying environmental conditions and 

regimes of AR application. In Finland, it would be also important to study efficacy and 

resistance in yellow-necked field mouse which is far more common pest rodent compared to 

the house mouse. 

 

4.1.2 Brown rat 

The observed AR prevalence in rats (4%) is very low compared to what has been observed in 

many other countries. For example, Desvars-Larrive et al. (2017) found a high prevalence 

(55.8%) of the type Y139F in rats sampled in France. On the other hand, Mooney et al. (2018) 

found no genetic evidence for the occurrence of resistance in 65 brown rat samples analysed, 

indicative of an absence, or low prevalence, of resistance in rats in at least the Eastern region 

of the island of Ireland. 
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The Y139C and Y139F types prevail in Europe (Iacucci et al. 2018), and they are found for 

example in Denmark, Germany, France, UK, Netherlands, and Hungary. In our samples, 

however, no Y139C, or any of the other commonly observed types, were detected. Instead, 

we found two individuals with the R33P polymorphism of Vkorc1, which has been found to 

confer resistance to warfarin in the laboratory. Type R33P is known from rats in 

Nottinghamshire (UK; Prescott and Coan 2018) and Japan (Tanaka et al. 2013). 

Likewise, Iacucci et al. (2018) found none of the common types in their study conducted in 

rats in Italy but instead they found a new type of Vkorc1 gene polymorphism, I123S. It is not 

known if this type confers anticoagulant resistance in rats, but since it is located in the same 

position as type I123N, responsible for anticoagulant resistance in humans (Oldenburg et al. 

2014), Iacucci et al. (2018) suggest that it could be involved in resistance development in rats 

too. Iacucci et al. (2018) propose that the total absence in the Italian samples of known 

polymorphisms associated with resistance may be attributable to the different pattern of use 

of anticoagulant rodenticides compared to that of many other European countries (e.g., UK), 

where a much stricter regulation does not allow the use of more potent SGARs (i.e., 

brodifacoum and flocoumafen) in outdoor areas. According to Iacucci et al. (2018) in Italy, 

there is often routine use of the most potent anticoagulants. 

Cowan et al. (2017) studied resistance in Rattus species in New Zealand and found three new 

polymorphism types but none of the most common ones. The lack of common types in New 

Zealand rats could however be an outcome of a founder effect, which is an unlikely 

explanation for our results.  

The absence of the common Vkorc1 types in our dataset does not confirm their absence in 

Finland but does indicate a low prevalence at least in southwestern part of the country. 

However, the sample size per location was quite low, especially in the rural locations. We are 

unsure of the origin of the R33P type present in our samples. The single location in which the 

resistant rats were trapped was a farm in southwestern Finland, which largely rules out the 

possibility of an incidental introduction of individuals (via e.g., ships) carrying an exotic 

resistance type. The observed R33P polymorphism found in our samples could be a result of 

a spontaneous polymorphism occurring in our study population. It might also be possible that 

type R33P could be more common than currently observed if the testing of Vkorc1 

polymorphism has been primarily focused on searching for the most common 

polymorphisms, as their presence plays a more important role in terms of pest management. 

Resampling and analysing the study populations are needed to gain more information about 

the prevalence of Vkorc1 types in Finnish rat populations and to avoid spread of resistance. 

Runge et al. (2013) studied the distribution of rodenticide resistance in urban and rural rat 

populations in Germany and found homozygous polymorphism in urban areas only. They 

hypothesised that these results could reflect differing selection pressures due to rodent 

control between urban and rural areas, in that AR use might be more intensive in the former 

sites. However, the results could also be due to sampling bias, as rural samples were primarily 
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bycatch from sites not experiencing a heavy rat infestation, while the urban samples came 

from selected sites with more serious rat control problems. Due to low prevalence of AR 

resistance, we are unable to address this topic in this current study. 

 

4.2 Conclusions/recommendations 

Our results suggest that the type Y139C polymorphism of Vkorc1 is common in Finnish house 

mouse populations and this knowledge should be considered when planning professional 

control actions against the species. Mechanical and/or electronic traps should be favoured 

for the control of house mouse and if anticoagulant rodenticides are used, it would be 

preferable to use the most potent active substances (brodifacoum, difethialone, 

flocoumafen). Private use is not considered as a major risk for the development and spread 

of resistance as the general public can only use the most potent anticoagulants for which no 

resistance impairing rodent control has been observed yet. In addition, Finnish Safety and 

Chemicals Agency (Tukes) recommends the use of mechanical traps in first place for the 

control of mice in private houses and cottages.  

In UK, for example, bromadiolone is not recommended to be used against house mice due to 

the presence of the Y139C type. Also, difenacoum products should not be used, as mice 

carrying the Y139C polymorphism have a natural level of resistance to difenacoum (Buckle 

and Prescott 2012). Brodifacoum and flocoumafen are both effective against these resistant 

strains of house mice (RRAG 2012, Baxter 2019).  

The low number of AR resistant rats found and the absence of the most common Vkorc1 

polymorphism in the sampled individuals suggests a low prevalence of resistance in rats in 

Finland. However, more studies and increased sample sizes are needed to obtain a more 

thorough understanding on the prevalence of Vkorc1 types in Finnish rat populations and to 

avoid the spread of resistance. In addition, to fully understand the state of resistance in 

Finland, especially studies on effectiveness and resistance performed on yellow-necked 

mouse and potentially also bank voles (Myodes glareolus), would be greatly needed. 
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